On the Degenerate Crossing Number
نویسندگان
چکیده
The degenerate crossing number cr∗(G) of a graph G is the minimum number of crossing points of edges in any drawing of G as a simple topological graph in the plane. This notion was introduced by Pach and Tóth who showed that for a graph G with n vertices and e ≥ 4n edges cr∗(G) = Ω(e/n). In this paper we completely resolve the main open question about degenerate crossing numbers and show that cr∗(G) = Ω(e/n), provided that e ≥ 4n. This bound is best possible (apart for the multiplicative constant) as it matches the tight lower bound for the standard crossing number of a graph.
منابع مشابه
The Genus Crossing Number
Pach and Tóth [6] introduced a new version of the crossing number parameter, called the degenerate crossing number, by considering proper drawings of a graph in the plane and counting multiple crossing of edges through the same point as a single crossing when all pairwise crossings of edges at that point are transversal. We propose a related parameter, called the genus crossing number, where ed...
متن کاملThe Degenerate Crossing Number and Higher-Genus Embeddings
If a graph embeds in a surface with k crosscaps, does it always have an embedding in the same surface in which every edge passes through each crosscap at most once? This well-known open problem can be restated using crossing numbers: the degenerate crossing number, dcr(G), of G equals the smallest number k so that G has an embedding in a surface with k crosscaps in which every edge passes throu...
متن کاملA new network simplex algorithm to reduce consecutive degenerate pivots and prevent stalling
It is well known that in operations research, degeneracy can cause a cycle in a network simplex algorithm which can be prevented by maintaining strong feasible bases in each pivot. Also, in a network consists of n arcs and m nodes, not considering any new conditions on the entering variable, the upper bound of consecutive degenerate pivots is equal $left( begin{array}{c} n...
متن کاملConductivity Coefficient Modeling in Degenerate and Non-Degenerate Modes on GNSs
Carbon nanoscrolls (CNSs) with tubular structure similar to the open multiwall carbonnanotube have been of hot debate during recent years. Due to its unique property, Graphene Nanoscroll (GNS) have attracted many research groups’ attention and have been used by them. They specially studied on energy storage devices such as batteries and super capacitors. These devices can be schematically...
متن کاملMETAHEURISTIC ALGORITHMS FOR MINIMUM CROSSING NUMBER PROBLEM
This paper presents the application of metaheuristic methods to the minimum crossing number problem for the first time. These algorithms including particle swarm optimization, improved ray optimization, colliding bodies optimization and enhanced colliding bodies optimization. For each method, a pseudo code is provided. The crossing number problem is NP-hard and has important applications in eng...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete & Computational Geometry
دوره 49 شماره
صفحات -
تاریخ انتشار 2013